Abrupt termination of a quantum channel and exactly solvable position-dependent mass models in three dimensions
نویسنده
چکیده
We consider a particle with a position-dependent mass, moving in a threedimensional semi-infinite parallelepipedal or cylindrical channel under the influence of some hyperbolic potential. We show that the lack of uniformity in the environment generates an infinite number of bound states. PACS: 03.65.-w
منابع مشابه
More on an exactly solvable position-dependent mass Schrödinger equation in two dimensions: Algebraic approach and extensions to three dimensions
An exactly solvable position-dependent mass Schrödinger equation in two dimensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of recent theories describing superintegrable two-dimensional systems with integrals of motion that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra approach is used together with a realization...
متن کاملNon-Hermitian von Roos Hamiltonian’s η-weak-pseudo-Hermiticity and exact solvability
A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η-weak-pseudo-Hermitian Hamiltonians. Two ”user -friendly” reference-target maps are introduced to serve for exactsolvability of some non-Hermitian η-weak-pseudo-Hermitian position dependent mass Hamiltonians. A non-Hermitian PT -...
متن کاملتأثیر جرم مؤثر وابسته به مکان بر روی خواص اپتیکی میله کوانتومی
In the present work, first an analytic relation for position-dependent effective mass in a quantum rod is obtained. Then, the effect of position-dependent effective mass on the intersubband optical absorption coeffcient and the refractive index change in the quantum rod is examined. Our numerical calculations are performed using both a constant effective mass and the position-dependent effect...
متن کاملExactly Solvable Three-body SUSY Systems with Internal Degrees of Freedom
The approach of multi-dimensional SUSY Quantum Mechanics is used in an explicit construction of exactly solvable 3-body ( and quasi-exactly-solvable N -body ) matrix problems on a line. From intertwining relations with time-dependent operators, we build exactly solvable non-stationary scalar and 2 × 2 matrix 3-body models which are time-dependent extensions of the Calogero model. Finally, we in...
متن کاملDeformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem
We show that there exist some intimate connections between three unconventional Schrödinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrat...
متن کامل